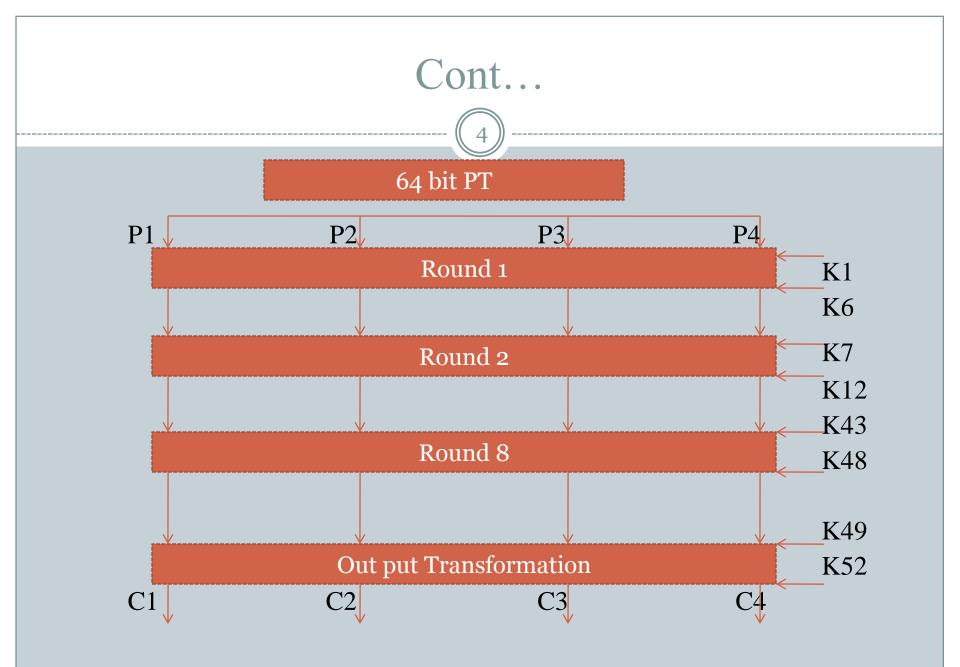
International Data Encryption Algorithm(IDEA) for IT 7<sup>th</sup> Sem Students


> Developed and Presented By: Dileep Kumar Yadav Assistant professor Dept. of CSE V.B.S PU,Jaunpur Mb. No.8726943272 Email-dileep1482@gmail.com

# International Data Encryption Algorithm(IDEA)

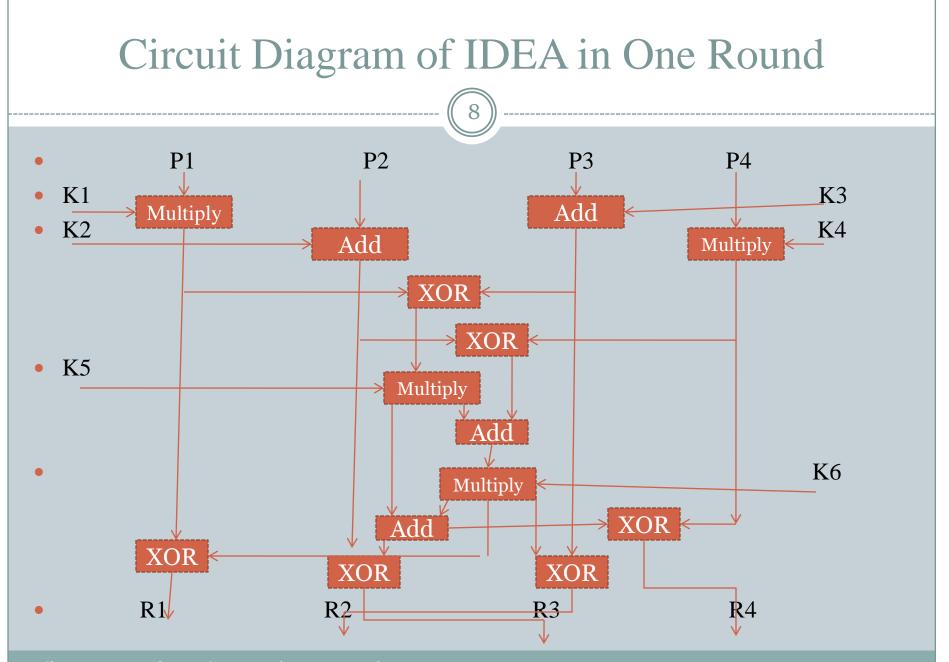
- IDEA is strongest cryptographic algorithm.
- It was launched in 1990 and finally named IDEA in 1992.
- It is also block cipher.
- It is patent algorithm.
- One popular email privacy technology i.e. PGP is based on IDEA.

## How IDEA Works

- It also works on 64 bit plain text blocks.
- The key is longer however and consists of 128 bits.
- It is reversible like DES that is the same algorithm is used for encryption and decryption process.



# Rounds


- We have mentioned above diagram there are 8 rounds in IDEA.
- Each rounds involves a series of operations on the four data blocks using 6 keys.
- After 8 rounds there is output transformation which produces 64 bits cipher text.
- Round are performed on some mathematical operation like multiplication, addition, and XOR operations.

## Cont...

- Step1-multiply P1 and K1
- Step2- Add P2 and K2
- Step3-Add P3 and K3
- Step4-Multiply P4 and K4
- Step5-XOR the results of step1 and step3
- Step6-XOR the results of step2 and step4
- Step7-Multiply the results of step5 with K5
- Step8-Add the results of step6 and step7
- Step9- Multiply the results of step8 with K6

# Cont...

- Step10-Add the results of step7 and step9
- Step11-XOR the results of step1 and step9
- Step12-XOR the results of step3 and step9
- Step13-XOR the results of step2 and step10
- Step14-XOR the results of step4 and step10



Dileep Kumar Yadav, Assistant Professor, Dept. of

#### 11/2/2020

# Sub key Generation for a Round

- We mentioned here each of the eight rounds make use of six sub keys so 8\*6=48 sub keys are required for the rounds.
- The final output transformation uses four sub keys making a total sub keys i.e. 48+4=52 sub keys are generated.
- Form an input key of 128 bits how are these 52 sub keys are generated.
- Let us understands this with the explanation for the first rounds.

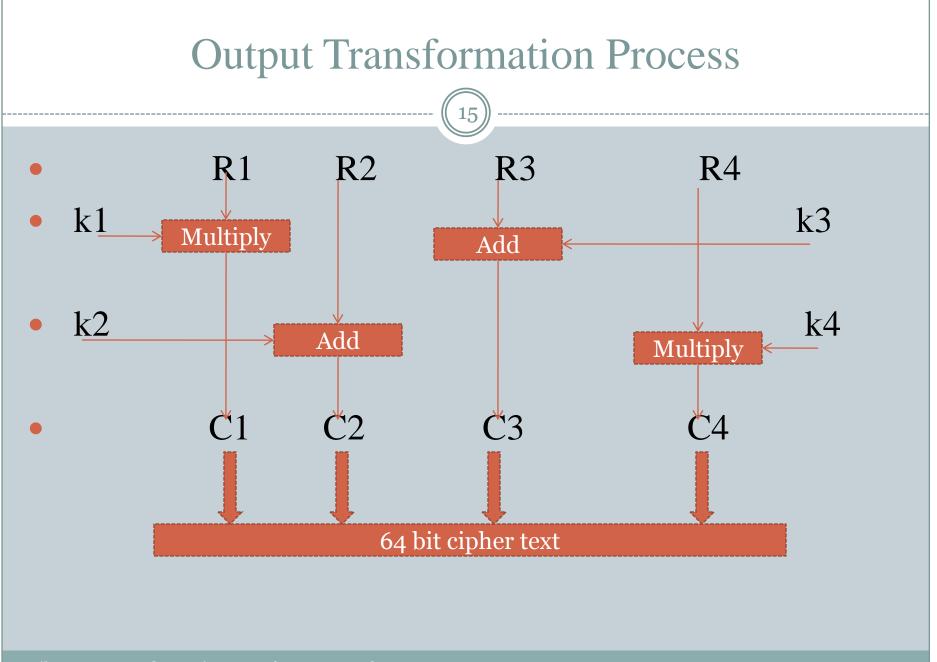
#### First Rounds

- We know that the initial key consists of 128 bits, from which 6 sub keys k1 to k6 are generated for the first round.
- Since k1 to k6 consist of 16 bits each, out of the original 128 bits, the first 96 bits i.e. 6 sub keys\*16bits per key are used for the first rounds.
- At the end of first rounds 97 to 128 bits of the original keys are unused.

#### Second Round

- In the second round firstly the 32 unused bits(i.e.97 to 128) of the first round are used. We know that each round requires 6 sub keys k1 to k6 each of 16 bits making a total of 96 bits.
- Thus for the second round we still require 96-32=64 more bits. However we have already exhausted all the 128 bits of the original key. How do we now get the remaining 64 bits?
- For this IDEA employs the technique of key shifting. At this stage the original key is shifted left circularly by 25 bits.




- That is the 26<sup>th</sup> bit of the original key moves to the first position and becomes the first bit after the shift and the 25<sup>th</sup> bit of the original key moves to the last position and becomes the 128<sup>th</sup> bit after the shift.
- So in this way this process works at 8 rounds and finally total 128 bits are used properly.

## **Output Transformation**

- The output transformation is one time operation. It takes place at the end of the 8<sup>th</sup> round.
- The input to the output transformation is of course the output of the 8<sup>th</sup> round.
- This is as usual a 64 bit value divided into four sub block i.e.R1 to R4 each consisting of 16 bits.
- In output transformation four sub keys are used like k49 to k52.

#### Details of the Output Transformation

- Step1- Multiply R1 and K1
- Step2- Add R2 and K2
- Step3- Add R3 and K3
- Step4- Multiply R4 and K4



Dileep Kumar Yadav, Assistant Professor, Dept. of

11/2/2020



16

• Cryptography and network security "Atul Kahate" 3e,Mc Graw hill education.